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Abstract

Traditionally, spacecraft attitude

control has been implemented using

control loops written in native code

for a space hardened processor. The
Naval Research Lab has taken this

approach during their development of
the Attitude Control Electronics

(ACE) package. After the system was

developed and delivered, NRL decided

to explore alternate technologies to

accomplish this same task more effi-

ciently. The approach taken by NRL

was to implement the ACE control

loops using expert systems technolo-

gies. The purpose of this effort was
to:

- Research capabilities required of

an expert system in processing a

classic closed-loop control

algorithm.

- Research the development environ-

ment required to design and test an

embedded expert systems
environment.

- Research the complexity of design

and development of expert systems

versus a conventional approach.

- Test the resulting systems against

the flight acceptance test software

for both response and accuracy.

Two expert systems were selected to

implement the control loops. Crite-
ria used for the selection of the

expert systems included that they had

to run in both embedded systems and

ground based environments. Using two

different expert systems allowed a

comparison of the real-time capabili-

ties, inferencing capabilities, and

the ground-based development
environment.
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The two expert systems chosen for the

evaluation were Spacecraft Command

Language (SCL), and NEXPERT Object.

SCL is a smart control system

produced for the Naval Research Lab

by Interface and Control Systems

(ICS). SCL was developed to be used

for real-time command, control, and

monitoring of a new generation of

spacecraft. NEXPERT Object is a

commercially available product devel-

oped by Neuron Data.

Results of the effort were evaluated

using the ACE test bed. The ACE test

bed had been developed and used to

test the original flight hardware and

software using simulators and flight-

like interfaces. The test bed was

used for testing the expert systems

in a "near-flight" environment.

This paper details the technical

approach, the system architecture,

the development environments, knowl-

edge base development, and results of
this effort.

Introduction

The Naval Research Lab has developed

an upper stage used for orbital

insertion of satellites. The upper

stage is spin stabilized until it

reaches the insertion orbit. Once in

the desired orbit, the upper stage is

spun down and stabilized using momen-

tum whmels and reaction control

thrusters. The upper stage then

jettisons the spacecraft allowing it

to move into its parking orbit.

All aspects of the orbital transfer

maneuver are controlled by the

Attitude Control Electronics (ACE).
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The ACE subsystem is semi-autonomous

and can issue thruster commands to

maintain the desired attitude. The

ACE control loops were developed in

the flight processor's native assem-

bly language. The development of the

algorithms required years of design,

testing and elaborate simulation.

Once the ACE system had been success-

fully launched, the NRL began explor-

ing alternate technologies for devel-

oping the same task. The NRL

selected an expert system approach

since it is event driven and would

allow the ACE system to take advan-

tage of 90's technologies.

The NRL development effort was to

focus on the following goals:

- Test expert system technologies to

prove productivity could be

increased, and the system could be

reused for other needs.

- Research the use of expert system

technologies to implement real-

world closed-loop control

algorithms.

- Research the type of development

environment that would be required

to develop and test an expert

system for closed loop control, in

contrast to the traditional envi-

ronment used to develop embedded

systems.

- Research the complexity of an

expert system design and the

difficulty in developing the

expert system compared to a tradi-

tional approach.

- Compare the performance and the

accuracy of the resulting expert

system against the proven flight

implementation.

To objectively develop and evaluate

the expert system approach, two

expert systems were chosen for the

development effort. The expert

systems that were chosen were

required to run in both embedded

systems and ground based environ-

ments. Both SCL and NEXPERT were

chosen since they both were available

in an embedded environment. Both

systems also have a ground based

development environment that is

available using an intuitive man-
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machine interface. The Macintosh II

was chosen as the development envi-

ronment for both expert systems.

Spacecraft Command Language (SCL) is

an expert system that was developed

for a NRL satellite controller by

Interface and Control Systems, Inc.

NEXPERT Object is a commercial expert

system that was developed by Neuron

Data. The two expert systems use

radically different approaches to the

implementation of the embedded system

application. SCL is a total control

environment that runs on the embedded

processor. The processor, I/O, and

operating system specifics are

isolated to a small number of .low

level routines. The SCL system is

bound to the operating system

specific calls and hardware inter-

faces using a small amount of _glue"

code. The flight algorithms are in

the form of scripts and rules and are

written in the SCL fifth-generation

language. Scripts and rules are

compiled on the ground and uploaded

to the embedded system where they are

interpreted by the SCL real-time

executive.

The NEXPERT Object system consists of

a library of callable routines that

are called from the application code.

The application code is written in

_C _ and makes calls to the NEXPERT

library for control of the rule eval-

uation and inference strategy. The

NEXPERT rules are written in a high

level language, and are compiled on

the ground and interpreted by the on-

board target processor.

The NRL contractor that implemented

the original ACE flight algorithms

was chosen to implement th_ expert

systems in both SCL and NEXPERT. The

contractor was familiar with the

flight algorithms as well as the

flight simulator, and had no contrac-

tual ties to either Interface and

Control Systems, or Neuron Data.

The ACE flight hardware had been

tested against a simulator that gave

a three axes model of the spaceborne

upper stage. The simulator provided

scenarios of normal spacecraft maneu-

vers as well as variations with

anomalies introduced which would

require the ACE algorithms to take
rorrective measures.
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Development Approach

The contractor chose to use the

Macintosh II as both the development

and run-time environment for the

NEXPERT and SCL expert systems. The

Macintosh 68000-based machine was

roughly equivalent to the flight

processor in terms of throughput.
The ACE simulator was hosted on a PDP

11/83 and was coupled to the

Macintosh using two parallel I/O

boards. One board was used to

receive sensor data from the simula-

tor, the other board was used to

issue commands to initiate thruster

maneuvers.

Custom code was developed for both

expert systems to support the ACE

prototype. The SCL expert system

required "glue" code to be written in

"C" to couple the bidirectional data
between SCL and the I/O boards. The

NEXPERT application executive was

written in "C". The executive made

calls to the NEXPERT library to

control the expert system, it also

performed tasks that could not easily

be implemented using NEXPERT's rules.

The NEXPERT data I/O module, which

was much the same as that used for

SCL, performed all communications

with the simulator. Additionally,

the I/O module performed timing func-

tions that were not available with

NEXPERT.

System Architecture

The ACE simulator emits an ii word

packet of raw sensor data every I0

msecs. A parallel interface was

required to ingest the packet, decom-
mutate the sensor data, translate the

data into engineering units, and

notify the expert system every i0

msecs. The engineering unit form of

the sensor data is used by the expert

systems for evaluation by rules and

scripts. The interface software also

stores every fifth packet for

attitude filter and nutation

calculations.
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The sensor data is used by the expert

systems to perform four closed loop

control tasks:

-Spin Rate Control

-Sun Angle Control

-Active Nutation Control

-Active Nutation

Calculations

Filter

The upper stage does not maintain a

constant center of gravity since one

or more satellites may be jettisoned.

The ACE algorithms must take the

changing center of gravity into

consideration when making attitude

adjustments. The upper stage is

normally spin stabilized. Under

optimum conditions, the spacecraft

spins about its X axis around the

velocity vector and both are paral-
lel. Nutation is introduced when the

spacecraft begins to wobble. In a

simple scenario, one end of the

spacecraft begins to wobble as

depicted in the drawing to the right.

The X axis "cones" about the velocity

vector. The cone angle is nominally

kept to +/- 0.25 ° by the ACE algo-

rithms. (The cone angle is discussed

later during the evaluation of the

systems.) The ACE control loops must

determine the appropriate thruster(s)

to fire, the exact time of the

firing, the duration of the burn, and

the number of burns required to

correct the nutation.

Upper Stage Nutation

The ACE interface software receives

raw sensor data from Digital Solar

Aspect Sensors (DSAS) and Body

Mounted Horizon Sensors (BMHS) .

These sensor readings are used to

calculate engineering values for the
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spin period, sun angle, and active

nutation. If the knowledge base

determines a corrective action is

required, a command is sent to enable

the appropriate thruster for some

delta time. Corrective actions may

be taken to correct either the spin

rate, sun angle, or active nutation.

All corrections take place based upon

commands generated by the ACE

algorithms.

Software Development

The accuracy of the thruster maneu-

vers is critical to correcting the

attitude of the spacecraft. The

thruster valve open and close times

are critical. With precise timing,

the number of corrections can be

reduced, thus minimizing the amount

of reaction control propellant used.

Since NEXPERT had no precision timing

capabilities, the functionality had

to be provided by writing "C" code in

the interface module to implement the

capability.

SCL not only provides a language that

supports the definition of rules, the

language also allows procedural

programming using scripts that share

a common syntax. The SCL scripts

provide a time synchronized execution

and are used for the precision timing

required for thruster maneuvers.

The ACE prototype also required a

method of enabling and disabling

various control modes. Again this

was handled by SCL scripts, while
additional source code was written

for NEXPERT to handle this

requirement.

Knowledge Base Development

Both expert systems provide a window-

based development environment for

defining the knowledge base. The

NEXPERT system provides a graphical

view of the rule heritage, SCL had no

graphic representation at the time.

The NEXPERT graphics allowed the

engineers to view the relationship
between database items and rules in

the knowledge base. Both systems

allow the user to define the knowl-

edge base using a windowed text
editor.

The SCL expert system allows the user

to mix scripts and rules to form the

knowledge base. Scripts may be

called by rules using SCL. The SCL

scripting feature reduced the

complexity of the knowledge base.

The english-like scripting capability

of SCL allows loops and control

structures to be written. These

loops and control structures are

difficult to construct using rules.

Scripting was also used to enable and

disable the various control modes.

The NEXPERT system required all

control algorithms be written as
rules and the control functions be

implemented by developing additional

rules or "C" source code.

The Inference technique of both

systems came into play when designing

the knowledge base. Both systems are

primarily forward chaining expert

systems. The NEXPERT inference

method employed a prioritized queue

for sequencing the execution of

rules. The "agenda" allows rules to

be dynamically scheduled for execu-

tion based on priority. As rules are

fired and database items are changed,

new rules are merged onto the agenda.

At the time of the ACE project, the

SCL inference method used a depth-

first strategy. When a database item

changes, the rules that reference the

item were executed in a prioritized
order. If a database item was

changed, the inference engine focused
on that item and executed rules asso-

ciated with it before returning to

the rules for the previous item.

Because of the depth-first method,

rules of lower priority could be

evaluated before rules of higher

priority. This was caused by the

system focusing on the last item

which changes. Since the ACE proto-

type was developed, the SCL inference

engine has been modified to allow a

prioritized queue of rules to be

evaluated similar to the agenda in

NEXPERT and CLIPS (an expert system

developed by NASA Johnson Space

Center). The inference strategy for

SCL is now user selectable for either
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depth first evaluation or evaluation

using an agenda.

The SCL inference engine time-shares

with the SCL command interpreter,

i.e., rules are evaluated in parallel

with script execution. This method

allows scripts to execute at timed

intervals and set database variables

that control the mode of the attitude

determination tasks. Changes to

these variables result in correspond-

ing rules to be executed, allowing

timing synchronization between the

scripts and rules.

The differing inference strategies

between the two systems provided some

interesting results. Statistics for

rule execution for the two systems

were collected. The NEXPERT rule

base required fewer rules to be

executed because of the prioritized

agenda. Although the SCL expert

system executed some rules more than

once, the end result (reflected in

telemetry variables) was identical

for both systems. For a given test

scenario, the SCL system was able to

evaluate more rules per second.

Object Representation

The knowledge base is centered around

a related group of objects. Both

NEXPERT and SCL require the knowledge

engineer to describe the ACE data

points for both commands and teleme-

try in terms of objects. Rules in

the knowledge base respond to changes

in the values of these objects and

may induce changes in one or more

other objects.

Both SCL and NEXPERT are generic

expert systems, that is, neither have

any ties to a given spacecraft. SCL

describes telemetry sensors, command

actuators, and derived items in a

database. Telemetry sensors are

physical sensor readings, while

derived items are data points that

are calculated based on readings from

one or more sensors. Command actua-

tors are data points that are used to

activate/deactivate relays, or serial

data words which are interpreted by

local or remote command functions,

SCL groups these items by a sorting

field called the subsystem.
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NEXPERT allows data points to be

defined in terms of classes,

subclasses, objects, subobjects, and

properties.

The SCL database was designed to

support a real-time system and was

purposely designed to have a limited
amount of data abstraction in terms

of object oriented programming. The

tradeoff was felt to be necessary due

to memory and real-time considera-

tions when running in an embedded
environment.

Testing the Knowledge Base

Once the knowledge base was devel-

oped, the rules and scripts must'be

tested and debugged. The NEXPERT

system provides a debugger similar to

those used in conventional program-

ming systems. Break points may be

set on rules and data objects

contained in the knowledge base.

When a break point is encountered,

data objects may be examined and/or

modified.

SCL allows the user to examine and

modify the knowledge base data points
from its command window. Much of the

SCL syntax that is used in scripts

and rules is also valid from the

command window. To implement a break

point, a "stop inference engine"

statement needed to be placed in the

script or rule that a break point is
desired. A full featured source

level debugger is currently under

development for a future release of

SCL.

SCL also allows the user to trace all

script and rule execution or individ-

ual scripts and rules may be selected

for tracing. Several levels of trac-

ing are supported, as well as tracing

on all or selected database points.

Expert System Verification

The resulting expert systems were

tested for response and accuracy and

compared to the actual flight soft-

ware. To verify the results, the ACE

flight software dynamic model was

used in the same manner as it was to

acceptance tests the flight software.

The following tests were used to
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verify the closed-loop control algo-

rithms for spin period, sun angle,

and active nutation:

- Sun Angle Correction - begin at

75 ° angle, maintain to 90 ° +/-

l0 ° .

- Sun Angle Correction - begin at

105 ° angle, maintain to 90 ° +/-

10 ° .

- Spin Period Correction - begin at

3.5 r.p.m., maintain 5.0 r.p.m.

+/- 10%.

- Spin Period Correction - begin at

5.5 r.p.m., maintain 5.0 r.p.m.

+/- 10%.

- Nutation Correction - begin at

0.i ° cone angle, maintain 0.25 °

cone angle.

-Nutation Correction - begin at

i0.0 ° cone angle, maintain 0.25 °

cone angle.

- Nutation and Sun Angle Correction.

-Spin Period and Sun Angle
Correction.

-Spin Period, Nutation, and Sun

Angle Correction.

The closed loop control of the spin

period and sun angle worked equally

well using both expert systems. Both

returned the same results as those

reported by the ACE flight software.

While testing the nutation control

with NEXPERT, problems were detected

while attempting to initiate a

thruster maneuver upon encountering a

zero-crossing in the nutation filter.

The problem was traced to the design

of the NEXPERT knowledge base and the

amount of time required to process

the rules upon encountering a zero

crossing. Because of this, the

NEXPERT knowledge base was not able

to correct the nutation.

To correct this problem, the NEXPERT

knowledge base was modified to reduce

the number of rules that needed to be

evaluated at the zero crossing. This

allowed the active nutation to be

corrected to the desired level. The

NEXPERT knowledge base corrected the

low nutation as efficiently as the

ACE flight software, however, an

additional 400 millisecond burn was

required of the 30 lb. thruster pair

to correct the i0 ° cone angle.

Having seen the difficulties in

achieving accurate timing for

thruster burn start and stop, the

knowledge base architecture was

redesigned to take advantage of the

SCL scripting capability. Previously

using NEXPERT, the spin control algo-

rithm, the sun control algorithm and

the nutation control algorithm fed

the burn control block. The burn

control block controlled the firing

of all thrusters. The SCL knowledge

base was redesigned to allow rules

that control the spin, sun, and nuta-

tion control and to execute scripts

directly which initiate and terminate

the appropriate thrusters.

This design allowed the SCL knowledge
base to correct all nutation as

effectively as the actual ACE flight

software. The NEXPERT knowledge

based could also have been

redesigned, but it was not deemed to

be sufficiently beneficial.
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Conclusions

The ACE expert systems proved that

expert system technology can be

applied to classic control loop algo-

rithms. The speed, accuracy, and

memory requirements can be met using

a more modern approach. However, a

commercial product was not deemed

feasible. The extensive memory usage

and real-time limitations of the

commercial product made it a poor

choice for this app_.ication.

NEXPERT's inability to keep pace with

the control loops made it an

unacceptable alternative.

SCL proved to be a capable of

performing all ACE monitor and

control functions at least as well as

the actual flight code. SCL is a

specialized product designed for
satellite command and control

systems. Since SCL was designed to
run in real-time embedded environ-

ments, overall memory usage has been

minimized, and SCL does not rely on

dynamic memory allocation (since it

will eventually cause fragmentation.)

SCL was designed to run on spacecraft

with radiation-hardened processors in

the 1.5-3 MIPS range and tight memory

requirements. With the skyrocketing

cost of rad-hard error correcting

memory, the SCL designers chose not

to include more extensive object-

oriented features.

Because of the favorable results of

the ACE effort, the SCL expert system
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was chosen as the embedded flight

controller software for a future NRL

satellite to be used on a national

program. SCL will be used for the

satellite as well as the dispenser.

SCL has also been chosen as the

ground based expert system at NRL

ground stations to support upcoming

missions as well as provide advisory

systems for existing satellite

systems.

The expert system approach allows

much greater productivity for the

engineers since they are working in a

very high level language and have

sophisticated development tools

available. The systems can also be

modeled and tested on desktop work-

stations rather than having to use

specialized test fixtures.

Because SCL is not a mass-marketed

commercial expert system, changes

could be made to the SCL system based

on lessons learned during the ACE

project:

- The agenda inference strategy was

added.

- A source-level debugger is under

development.

- The SCL development Man Machine

Interface is being ported to

Motif/X-Windows to run on many

popular workstations and X-
terminals.



- A graphics interface for SCL is
being developed to allow the
developer to view relationships
between database objects, rules,
and scripts.

- Several extensions to the SCL
syntax were requested and have
been added to the system.

Applied Expert System Technology

In the past, expert system technology

has been difficult to use, expensive,

and ran only on specialized hardware.

- Real-time command and control -

not a static query expert system

(Medical, Financial, etc.).

- Complete integrated environment

with re-usable software allows SCL

to be used for diverse

applications.

- Supports embedded and distributed

applications.

- Scripting capability for real-time

command and control, monitoring,

modeling, simulations, and

Modern expert systems are available

on a wide variety of processors and
have become an efficient and cost-

effective solution for systems devel-

opment. The expert system technology

can easily be merged with conven-

tional technology to allow simplifi-

cation of system development. By

developing realistic dynamic simula-

tions, rapid prototyping and modeling

of subsystems and entire systems is

practical. Developers can checkout

complex systems in a desktop environ-

ment and can find potential problems

early in the development cycle.

These simulations can be part of a

test bed that will not only support

control system software development

and validation but the same system

can be used for training. This

expert system technology can be

merged with other types of technology

such as databases, spreadsheets,

graphics, hypermedia, animation,

sound, and conventional code.

Expert systems can also aid in the

design and development of systems by

providing a reasoning mechanism that

models human reasoning, providing

data representation that more closely

models the "real world", and allowing

generic systems to be developed and

be reused, while localizing the

application specifics in the

knowledge base.

SCL

training.

- Easy to learn, excellent

Man/Machine Interface (MMI).

Compact sizing as well as the

abstraction of hardware specifics
allows the standard SCL kernel to be

used on a variety of hosts for embed-

ded processors as well as mini and

micro-computer and workstation appli-

cations.

SCL can be used for software simula-

tions of subsystems as well as an

entire spacecraft, systems modeling,

and training.

DOD, NASA, and the commercial sector

will be able to use SCL for any

applications requiring smart

subsystem control and monitoring.

These applications could include uses

in support of the Space Station,

robotics, future Lunar and Mars

missions, as well as commercial

applications requiring real-time

smart control system process

monitoring (petrochemicals,

manufacturing, utilities, etc.).
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SCL is unique in the area of command

and control because of its small

size, ease of use, versatility,

reusability, and adaptability. SCL

offers, in one package, the following

capabilities:
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